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1 Stochastic Scheme of Channel Gating

The gating of IP3R is given by the 12-state model described in the main text. To determine

the state of the channel, we have to determine the transition probabilities at a given time

[1, 2]. That is, if the jth channel is in state i, we have to determine the probabilities with

which it remains in that state or switches into another state allowed by the kinetic scheme

shown in Fig. 1 (main text) within the time interval ∆t. For example, if a channel is

in state CL
00, possible transitions are to states CL

20 and CI
04. For a sufficiently small time

interval ∆t, the probabilities for these transitions are given by P
(j)

CL
00→CL

20

= r
(CL

00→ CL
20)

∆t

and P
(j)

CL
00→CI

04

= r
(CL

00→ CI
04)

∆t. The probability for the channel to remain in state CL
00 is

PCL
00→CL

00
= 1 − PCL

00→CL
20
− PCL

00→CI
04

. To determine the transition probabilities, we divide the

unit interval into three subintervals of length PCL
00→i∆t, i represent the three states to which

the channel can make transition. If a random number drawn from a uniform distribution

over the unit interval falls into the subinterval PCL
00→i∆t, the corresponding transition is
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performed. The time interval ∆t was kept small enough for the linear dependence of Pi→i

on the time interval to remain valid. We used a time step of 1 µs for the puff simulations.

The channel is open when in any of the states OI
14, OI

24, or OH
24. The above procedure was

repeated for all channels.

2 Elements of Tridiagonal Matrix (TM)

Considering a spherical symmetry around the channel, the system of eqs. (26, main text)

and (27, main text) converts to a TM system. Here we derive the elements of the TM.

The detail derivation of the scheme is given in [3]. This method converts a 3D problem

into a 1D problem and is numerically significantly faster than the standard methods such

as Crank-Nicolson. In what follows n is the time index and j is the space index in spherical

polar coordinates. Using eq. (29, main text), we can write eq. (26, main text) as

c(n+1) − c(n)
∆t

= D∇2c(n+1) + Jδ(r) + krd(Bd − b(n)d ) − kfdc(n+1)b
(n)
d (1S)

Writing the Laplacian in spherical polar coordinates and considering no-flux boundary con-

ditions we get the elements of lower, middle, and upper diagonal (aj, bj, and cj respectively)

of the TM given as

aj =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if j = 1

−D∆t
∆r2 (1 − 1

2j )2 if j = 2, ...N − 1

−2D∆t
∆t if j = N.

(2S)

bj =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

6D∆t
∆r2 + 1 + kfdb(n,j)d ∆t if j = 1

D∆t
∆r2 (1 + 1

2j )2 + D∆t
∆r2 (1 − 1

2j )2 + 1 + kfdb(n,j)d ∆t if j = 2, ..N − 1

2D∆t
∆r2 + 1 + kfdb(n,j)d ∆t if j = N.

(3S)

cj =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−6D∆t
∆r2 if j = 1

−D∆t
∆r2 (1 + 1

2j )2 if j = 2, ....N − 1

0 if j = N.
(4S)
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The right hand side for the TM system for the cytosolic Ca2+ concentration is represented

by dj and is

dj = c(n,j) + Jδ(r)∆t + krd(Bd − b(n,j)d )∆t, j=1,..N (5S)

The rate equation for dye buffer can be expanded and solved iteratively in similar fashion.
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Table 1S: Parameters for puff simulations
Quantity Symbol — Numerical Value Reference

Resting Cytosolic Calcium Carest = 50nM [4]
Dye Buffer Bd = 20 µM
Number of channels Nch = 10 [5]
Pore Radius rpore = 2.5nm [6, 7]
Channel Spacing rnn = 120nm [3, 8]
Ca2+ Dc = 0.223µm2/ms [9]
Dye Dd = 0.200µm2/ms [10]

Dye Buffer kfd = 0.15/µMms [10, 11]
krd = 0.45/ms [10, 11]
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